Size Distribution¶
Particula-beta Index / Particula Beta / Data / Process / Size Distribution
Auto-generated documentation for particula_beta.data.process.size_distribution module.
iterate_merge_distributions¶
Show source in size_distribution.py:364
Merge two sets of particle size distributions using linear weighting.
Arguments¶
concentration_lower
- The concentration of particles in the lower distribution.diameters_lower
- The diameters corresponding to the lower distribution.concentration_upper
- The concentration of particles in the upper distribution.diameters_upper
- The diameters corresponding to the upper distribution.
Returns¶
Tuple: - The merged diameter distribution. - The merged concentration distribution.
Signature¶
def iterate_merge_distributions(
concentration_lower: np.ndarray,
diameters_lower: np.ndarray,
concentration_upper: np.ndarray,
diameters_upper: np.ndarray,
) -> tuple[np.ndarray, np.ndarray]: ...
mean_properties¶
Show source in size_distribution.py:22
Calculate the mean properties of the size distribution.
Arguments¶
sizer_dndlogdp
- Array of particle concentrations in each bin.sizer_diameter
- Array of bin center diameters.total_concentration
- Optional; the total concentration of particles in the distribution. If not provided, it will be calculated.sizer_limits
- Optional; the lower and upper limits of the size range of interest. If not provided, the full range will be used.
Returns¶
Tuple: - Total concentration of particles in the distribution. - Total mass of particles in the distribution. - Mean diameter of the distribution by number. - Mean diameter of the distribution by volume. - Geometric mean diameter of the distribution. - Mode diameter of the distribution by number. - Mode diameter of the distribution by volume.
Signature¶
def mean_properties(
sizer_dndlogdp: np.ndarray,
sizer_diameter: np.ndarray,
total_concentration: Optional[float] = None,
sizer_limits: Optional[list] = None,
) -> Tuple[float, float, float, float, float, float, float]: ...
merge_distributions¶
Show source in size_distribution.py:275
Merge two particle size distributions using linear weighting, accounting for mobility versus aerodynamic diameters.
Arguments¶
concentration_lower
- The concentration of particles in the lower distribution.diameters_lower
- The diameters corresponding to the lower distribution.concentration_upper
- The concentration of particles in the upper distribution.diameters_upper
- The diameters corresponding to the upper distribution.
Returns¶
Tuple:
- -
new_2d - The merged concentration distribution.
- -
new_diameter - The merged diameter distribution.
Notes¶
Add process the moblity vs aerodynamic diameters
Signature¶
def merge_distributions(
concentration_lower: np.ndarray,
diameters_lower: np.ndarray,
concentration_upper: np.ndarray,
diameters_upper: np.ndarray,
) -> tuple[np.ndarray, np.ndarray]: ...
merge_size_distribution¶
Show source in size_distribution.py:410
Merge two particle size distributions using linear weighting. The concentrations should be in dN/dlogDp.
Arguments¶
stream_lower
- The stream with the lower size range, e.g., from an SMPS.stream_upper
- The stream with the upper size range, e.g., from an OPS or APS.lower_units
- The units of the lower distribution. Default is 'nm'.upper_units
- The units of the upper distribution. Default is 'um'.
Returns¶
Stream
- A stream object containing the merged size distribution.
Signature¶
def merge_size_distribution(
stream_lower: Stream,
stream_upper: Stream,
lower_units: str = "nm",
upper_units: str = "um",
) -> object: ...
See also¶
resample_distribution¶
Show source in size_distribution.py:453
Resample a particle size distribution to a new set of diameters using numpy interpolation. Extrapolated values will be set to NaN.
Arguments¶
stream
- The stream object containing the size distribution to resample.new_diameters
- The new diameters to which the distribution will be resampled.concentration_scale
- The concentration scale of the distribution. Options are 'dn/dlogdp', 'dn', 'pms' (which is equivalent to 'dn'), or 'pdf'. Default is 'dn/dlogdp'.clone
- Whether to clone the stream before resampling. Default is False.
Returns¶
Stream
- The resampled stream object.
Signature¶
def resample_distribution(
stream: Stream,
new_diameters: np.ndarray,
concentration_scale: str = "dn/dlogdp",
clone: bool = False,
) -> Stream: ...
See also¶
sizer_mean_properties¶
Show source in size_distribution.py:113
Calculate the mean properties of the size distribution and return the updated stream.
Arguments¶
stream
- The stream containing the size distribution data to process.sizer_limits
- A list specifying the lower and upper limits of the size range of interest, in the units specified bydiameter_units
. Default is None, which means the full range is used.density
- The density of the particles in g/cm³. Default is 1.5 g/cm³.diameter_units
- The units of the diameter. Default is 'nm'. The specified units will be converted to nanometers.
Returns¶
Stream
- The updated stream with the mean properties added.
Signature¶
def sizer_mean_properties(
stream: Stream,
sizer_limits: Optional[List[float]] = None,
density: float = 1.5,
diameter_units: str = "nm",
) -> Stream: ...