Coagulation Rate¶
Particula Index / Particula / Dynamics / Coagulation / Coagulation Rate
Auto-generated documentation for particula.dynamics.coagulation.coagulation_rate module.
get_coagulation_gain_rate_continuous¶
Show source in coagulation_rate.py:120
Calculate the coagulation gain rate, via the integration method.
Arguments¶
radius : The radius of the particles. concentration : The distribution of particles. kernel : The coagulation kernel.
Returns¶
The coagulation gain rate.
References¶
- This equation necessitates the use of a for-loop due to the
convoluted use of different radii at different stages. This is the
most expensive step of all coagulation calculations. Using
RectBivariateSpline
accelerates this significantly. - Note, to estimate the kernel and distribution at (other_radius**3 - some_radius**3)*(⅓) we use interporlation techniques.
- Seinfeld, J. H., & Pandis, S. (2016). Atmospheric chemistry and physics, Chapter 13 Equations 13.61
Signature¶
def get_coagulation_gain_rate_continuous(
radius: Union[float, NDArray[np.float64]],
concentration: Union[float, NDArray[np.float64]],
kernel: NDArray[np.float64],
) -> Union[float, NDArray[np.float64]]: ...
get_coagulation_gain_rate_discrete¶
Show source in coagulation_rate.py:40
Calculate the coagulation gain rate, via the integration method, by converting to a continuous distribution.
Arguments¶
radius : The radius of the particles. concentration : The distribution of particles. kernel : The coagulation kernel.
Returns¶
The coagulation gain rate.
References¶
- This equation necessitates the use of a for-loop due to the
convoluted use of different radii at different stages. This is the
most expensive step of all coagulation calculations. Using
RectBivariateSpline
accelerates this significantly. - Note, to estimate the kernel and distribution at (other_radius**3 - some_radius**3)*(⅓) we use interporlation techniques.
- Seinfeld, J. H., & Pandis, S. (2016). Atmospheric chemistry and physics, Chapter 13 Equations 13.61
Signature¶
def get_coagulation_gain_rate_discrete(
radius: Union[float, NDArray[np.float64]],
concentration: Union[float, NDArray[np.float64]],
kernel: NDArray[np.float64],
) -> Union[float, NDArray[np.float64]]: ...
get_coagulation_loss_rate_continuous¶
Show source in coagulation_rate.py:96
Calculate the coagulation loss rate, via the integration method.
Arguments¶
radius : The radius of the particles. concentration : The distribution of particles. kernel : The coagulation kernel.
Returns¶
The coagulation loss rate.
References¶
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13 Equations 13.61
Signature¶
def get_coagulation_loss_rate_continuous(
radius: Union[float, NDArray[np.float64]],
concentration: Union[float, NDArray[np.float64]],
kernel: NDArray[np.float64],
) -> Union[float, NDArray[np.float64]]: ...
get_coagulation_loss_rate_discrete¶
Show source in coagulation_rate.py:19
Calculate the coagulation loss rate, via the summation method.
Arguments¶
concentraiton : The distribution of particles. kernel : The coagulation kernel.
Returns¶
The coagulation loss rate.
References¶
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13 Equations 13.61
Signature¶
def get_coagulation_loss_rate_discrete(
concentration: Union[float, NDArray[np.float64]], kernel: NDArray[np.float64]
) -> Union[float, NDArray[np.float64]]: ...