particula.dynamics.coagulation.coagulation_rate¶
coagulation_rate
¶
Coagulation rate calculations for particle populations.
This module defines discrete and continuous ways (via summation or integration) to compute the gain and loss terms in coagulation processes. Each function isolates specific calculation details, allowing for easier testing and flexibility in usage.
References
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13, Equation 13.61.
get_coagulation_gain_rate_continuous
¶
get_coagulation_gain_rate_continuous(radius: Union[float, NDArray[float64]], concentration: Union[float, NDArray[float64]], kernel: NDArray[float64]) -> Union[float, NDArray[np.float64]]
Calculate the coagulation gain rate via continuous integration.
This function converts the distribution to a continuous form, then uses RectBivariateSpline to interpolate and integrate:
- gain_rate® = ∫ kernel(r, r') × concentration® × concentration(r') dr'
Parameters:
-
- radius–The particle radius array [m].
-
- concentration–The particle distribution.
-
- kernel–Coagulation kernel matrix.
Returns:
-
Union[float, NDArray[float64]]–- The coagulation gain rate, in the shape of radius.
Examples:
import numpy as np
import particula as par
r = np.array([1e-7, 2e-7, 3e-7])
conc = np.array([1.0, 0.5, 0.2])
kern = np.ones((3, 3)) * 1e-9
gain_cont = par.dynamics.get_coagulation_gain_rate_continuous(
r, conc, kern
)
print(gain_cont)
References
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13, Equation 13.61.
Source code in particula/dynamics/coagulation/coagulation_rate.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | |
get_coagulation_gain_rate_discrete
¶
get_coagulation_gain_rate_discrete(radius: Union[float, NDArray[float64]], concentration: Union[float, NDArray[float64]], kernel: NDArray[float64]) -> Union[float, NDArray[np.float64]]
Calculate the coagulation gain rate (using a quasi-continuous approach).
Though named "discrete," this function converts the discrete distribution to a PDF and uses interpolation (RectBivariateSpline) to approximate the gain term. The concept is:
- gain_rate® = ∫ kernel(r, r') × PDF® × PDF(r') dr' (implemented via numeric integration)
Parameters:
-
- radius–The particle radius array [m].
-
- concentration–The particle distribution.
-
- kernel–Coagulation kernel matrix.
Returns:
-
Union[float, NDArray[float64]]–- The coagulation gain rate, matched to the shape of radius.
Examples:
import numpy as np
import particula as par
r = np.array([1e-7, 2e-7, 3e-7])
conc = np.array([1.0, 0.5, 0.2])
kern = np.ones((3, 3)) * 1e-9
gain_val = par.dynamics.get_coagulation_gain_rate_discrete(
r, conc, kern
)
print(gain_val)
References
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13, Equation 13.61.
Source code in particula/dynamics/coagulation/coagulation_rate.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | |
get_coagulation_loss_rate_continuous
¶
get_coagulation_loss_rate_continuous(radius: Union[float, NDArray[float64]], concentration: Union[float, NDArray[float64]], kernel: NDArray[float64]) -> Union[float, NDArray[np.float64]]
Calculate the coagulation loss rate via continuous integration.
This method integrates the product of kernel and concentration over the radius grid. The equation is:
- loss_rate® = concentration® × ∫ kernel(r, r') × concentration(r') dr'
Parameters:
-
- radius–The particle radius array [m].
-
- concentration–The particle distribution.
-
- kernel–Coagulation kernel matrix (NDArray[np.float64]).
Returns:
-
Union[float, NDArray[float64]]–- The coagulation loss rate.
Examples:
import numpy as np
import particula as par
r = np.array([1e-7, 2e-7, 3e-7])
conc = np.array([1.0, 0.5, 0.2])
kern = np.ones((3, 3)) * 1e-9
loss_cont = par.dynamics.get_coagulation_loss_rate_continuous(
r, conc, kern
)
print(loss_cont)
References
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13, Equation 13.61.
Source code in particula/dynamics/coagulation/coagulation_rate.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | |
get_coagulation_loss_rate_discrete
¶
get_coagulation_loss_rate_discrete(concentration: Union[float, NDArray[float64]], kernel: NDArray[float64]) -> Union[float, NDArray[np.float64]]
Calculate the coagulation loss rate via a discrete summation approach.
This function computes the loss rate of particles from collisions by summing over all size classes. The equation is:
- loss_rate = ΣᵢΣⱼ [kernel(i, j) × concentration(i) × concentration(j)]
Parameters:
-
- concentration–The distribution of particles.
-
- kernel–The coagulation kernel matrix (NDArray[np.float64]).
Returns:
-
Union[float, NDArray[float64]]–- The coagulation loss rate (float or NDArray[np.float64]).
Examples:
import numpy as np
import particula as par
conc = np.array([1.0, 2.0, 3.0])
kern = np.ones((3, 3))
loss = par.dynamics.get_coagulation_loss_rate_discrete(conc, kern)
print(loss)
# Example output: 36.0
References
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics, Chapter 13, Equation 13.61.
Source code in particula/dynamics/coagulation/coagulation_rate.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | |