Sigma Relative Velocity Ao2008¶
Particula Index / Particula / Dynamics / Coagulation / Turbulent Dns Kernel / Sigma Relative Velocity Ao2008
Auto-generated documentation for particula.dynamics.coagulation.turbulent_dns_kernel.sigma_relative_velocity_ao2008 module.
VelocityCorrelationTerms¶
Show source in sigma_relative_velocity_ao2008.py:35
Parameters from computing velocity correlation terms.
Signature¶
class VelocityCorrelationTerms(NamedTuple): ...
_compute_cross_correlation_velocity¶
Show source in sigma_relative_velocity_ao2008.py:214
Compute the cross-correlation of the fluctuating velocities of droplets
The function is given by:
⟨ v'^(1) v'^(2) ⟩ = (u'² f₂(R) / (τ_p1 τ_p2)) * [b₁ d₁ Φ(c₁, e₁) - b₁ d₂ Φ(c₁, e₂) - b₂ d₁ Φ(c₂, e₁) + b₂ d₂ Φ(c₂, e₂)]
- u' (turbulence_intensity) : Fluid RMS fluctuation velocity [m/s].
- τ_p1, τ_p2 : Inertia timescales of droplets 1 and 2 [s].
- f₂(R) : Longitudinal velocity correlation function.
- Φ(c, e) : Function Φ computed using
get_phi_ao2008
.
Arguments¶
- turbulence_intensity : Fluid RMS fluctuation velocity [m/s].
- collisional_radius : Distance between two colliding droplets [m].
- `-` *particle_inertia_time* - Inertia timescale of droplet 1 [s].
- `-` *particle_velocity* - Droplet velocity [m/s].
- taylor_microscale : Taylor microscale [m].
- eulerian_integral_length : Eulerian integral length scale [m].
- velocity_correlation_terms : Velocity correlation coefficients [-].
Returns¶
- Cross-correlation velocity ⟨ v'^(1) v'^(2) ⟩ [m²/s²].
References¶
- Ayala, O., Rosa, B., & Wang, L. P. (2008). Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New Journal of Physics, 10. https://doi.org/10.1088/1367-2630/10/7/075016
Signature¶
@validate_inputs(
{
"turbulence_intensity": "positive",
"collisional_radius": "positive",
"particle_inertia_time": "positive",
"particle_velocity": "positive",
"taylor_microscale": "positive",
"eulerian_integral_length": "positive",
}
)
def _compute_cross_correlation_velocity(
turbulence_intensity: float,
collisional_radius: Union[float, NDArray[np.float64]],
particle_inertia_time: Union[float, NDArray[np.float64]],
particle_velocity: Union[float, NDArray[np.float64]],
taylor_microscale: float,
eulerian_integral_length: float,
velocity_correlation_terms: VelocityCorrelationTerms,
) -> Union[float, NDArray[np.float64]]: ...
See also¶
_compute_rms_fluctuation_velocity¶
Show source in sigma_relative_velocity_ao2008.py:132
Compute the square of the RMS fluctuation velocity for the k-th droplet.
The function is given by:
⟨ (v'^(k))² ⟩ = (u'² / τ_pk) * [b₁ d₁ Ψ(c₁, e₁) - b₁ d₂ Ψ(c₁, e₂) - b₂ d₁ Ψ(c₂, e₁) + b₂ d₂ Ψ(c₂, e₂)]
- u' (turbulence_intensity) : Fluid RMS fluctuation velocity [m/s].
- τ_pk (particle_inertia_time) : Inertia timescale of the droplet k [s].
- Ψ(c, e) : Function Ψ computed using
get_psi_ao2008
.
Arguments¶
- turbulence_intensity : Fluid RMS fluctuation velocity [m/s].
- particle_inertia_time : Inertia timescale of the droplet k [s].
- velocity_correlation_terms : Velocity correlation coefficients [-].
Returns¶
- RMS fluctuation velocity squared ⟨ (v'^(k))² ⟩ [m²/s²].
References¶
- Ayala, O., Rosa, B., & Wang, L. P. (2008). Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New Journal of Physics, 10. https://doi.org/10.1088/1367-2630/10/7/075016
Signature¶
@validate_inputs(
{"turbulence_intensity": "positive", "particle_inertia_time": "positive"}
)
def _compute_rms_fluctuation_velocity(
turbulence_intensity: float,
particle_inertia_time: Union[float, NDArray[np.float64]],
velocity_correlation_terms: VelocityCorrelationTerms,
) -> Union[float, NDArray[np.float64]]: ...
See also¶
get_relative_velocity_variance¶
Show source in sigma_relative_velocity_ao2008.py:48
Compute the variance of particle relative-velocity fluctuation.
The function is given by:
σ² = ⟨ (v'^(2))² ⟩ + ⟨ (v'^(1))² ⟩ - 2 ⟨ v'^(1) v'^(2) ⟩
- ⟨ (v'^(k))² ⟩ is the square of the RMS fluctuation velocity for droplet k
- ⟨ v'^(1) v'^(2) ⟩ is the cross-correlation of the fluctuating velocities.
Arguments¶
- turbulence_intensity : Fluid RMS fluctuation velocity [m/s].
- collisional_radius : Distance between two colliding droplets [m].
- particle_inertia_time : Inertia timescale of droplet 1 [s].
- particle_velocity : Droplet velocity [m/s].
- taylor_microscale : Taylor microscale [m].
- eulerian_integral_length : Eulerian integral length scale [m].
- lagrangian_integral_time : Lagrangian integral time scale [s].
Returns¶
- σ² : Variance of particle relative-velocity fluctuation,
(n, n) matrix where n is number of particles [m²/s²],
References¶
- Ayala, O., Rosa, B., & Wang, L. P. (2008). Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New Journal of Physics, 10. https://doi.org/10.1088/1367-2630/10/7/075016
Signature¶
@validate_inputs(
{
"turbulence_intensity": "positive",
"collisional_radius": "positive",
"particle_inertia_time": "positive",
"particle_velocity": "positive",
}
)
def get_relative_velocity_variance(
turbulence_intensity: float,
collisional_radius: NDArray[np.float64],
particle_inertia_time: NDArray[np.float64],
particle_velocity: NDArray[np.float64],
taylor_microscale: float,
eulerian_integral_length: float,
lagrangian_integral_time: float,
) -> Union[float, NDArray[np.float64]]: ...