particula.dynamics.condensation.mass_transfer¶
mass_transfer
¶
Particle Vapor Equilibrium, condensation, and evaporation based on partial pressures to calculate dm/dt or other forms of particle growth and decay.
Equation
- dm/dt = 4π × radius × Di × Mi × f(Kn, α) × delta_pi / (R × T)
- radius : The particle radius in m.
- Di : The diffusion coefficient of species i in m²/s.
- Mi : The molar mass of species i in kg/mol.
- f(Kn, α) : Transition function based on Knudsen number and accommodation coefficient.
- delta_pi : Difference in partial pressures between gas and particle phases in Pa.
- R : Gas constant in J/(mol·K).
- T : Temperature in K.
References
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (3rd ed.). John Wiley & Sons, Inc.
- Topping, D., & Bane, M. (2022). Introduction to Aerosol Modelling (D. Topping & M. Bane, Eds.). Wiley. https://doi.org/10.1002/9781119625728
- Aerosol Modeling: Chapter 2, Equation 2.40
get_first_order_mass_transport_k
¶
get_first_order_mass_transport_k(particle_radius: Union[float, NDArray[float64]], vapor_transition: Union[float, NDArray[float64]], diffusion_coefficient: Union[float, NDArray[float64]] = 2e-05) -> Union[float, NDArray[np.float64]]
Calculate the first-order mass transport coefficient per particle.
This function computes the coefficient K that governs how fast mass is transported to or from a particle in a vapor. The equation is:
- K = 4π × radius × D × X
- K : Mass transport coefficient [m³/s].
- radius : Particle radius [m].
- D : Diffusion coefficient of the vapor [m²/s].
- X : Vapor transition correction factor [unitless].
Parameters:
-
- particle_radius–The radius of the particle [m].
-
- vapor_transition–The vapor transition correction factor [unitless].
-
- diffusion_coefficient–The diffusion coefficient of the vapor [m²/s]. Defaults to 2e-5 (approx. air).
Returns:
-
Union[float, NDArray[float64]]–- The first-order mass transport coefficient per particle [m³/s].
Examples:
import particula as par
par.dynamics.get_first_order_mass_transport_k(
particle_radius=1e-6,
vapor_transition=0.6,
diffusion_coefficient=2e-9
)
# Output: 1.5079644737231005e-14
import particula as par
par.dynamics.get_first_order_mass_transport_k(
particle_radius=np.array([1e-6, 2e-6]),
vapor_transition=np.array([0.6, 0.6]),
diffusion_coefficient=2e-9
)
# Output: array([1.50796447e-14, 6.03185789e-14])
References
- Aerosol Modeling: Chapter 2, Equation 2.49
- Wikipedia contributors, "Mass diffusivity," https://en.wikipedia.org/wiki/Mass_diffusivity
Source code in particula/dynamics/condensation/mass_transfer.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | |
get_mass_transfer
¶
get_mass_transfer(mass_rate: NDArray[float64], time_step: float, gas_mass: NDArray[float64], particle_mass: NDArray[float64], particle_concentration: NDArray[float64]) -> NDArray[np.float64]
Route mass transfer calculation to single or multiple-species routines.
Depending on whether gas_mass represents one or multiple species, this function calls either calculate_mass_transfer_single_species or calculate_mass_transfer_multiple_species. The primary calculation involves:
- mass_to_change = mass_rate × time_step × particle_concentration
Parameters:
-
- mass_rate–The rate of mass transfer per particle [kg/s].
-
- time_step–The time step for the mass transfer calculation [s].
-
- gas_mass–The available mass of gas species [kg].
-
- particle_mass–The mass of each particle [kg].
-
- particle_concentration–The concentration of particles [#/m³].
Returns:
-
NDArray[float64]–- The mass transferred (array with the same shape as particle_mass).
Examples:
import particula as par
par.dynamics.get_mass_transfer(
mass_rate=np.array([0.1, 0.5]),
time_step=10,
gas_mass=np.array([0.5]),
particle_mass=np.array([1.0, 50]),
particle_concentration=np.array([1, 0.5])
)
import particula as par
par.dynamics.get_mass_transfer(
mass_rate=np.array([[0.1, 0.05, 0.03], [0.2, 0.15, 0.07]]),
time_step=10,
gas_mass=np.array([1.0, 0.8, 0.5]),
particle_mass=np.array([[1.0, 0.9, 0.8], [1.2, 1.0, 0.7]]),
particle_concentration=np.array([5, 4])
)
Source code in particula/dynamics/condensation/mass_transfer.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | |
get_mass_transfer_of_multiple_species
¶
get_mass_transfer_of_multiple_species(mass_rate: NDArray[float64], time_step: float, gas_mass: NDArray[float64], particle_mass: NDArray[float64], particle_concentration: NDArray[float64]) -> NDArray[np.float64]
Calculate mass transfer for multiple gas species.
Here, gas_mass has multiple elements (each species). For each species, this function calculates mass_to_change for all particle bins:
- mass_to_change = mass_rate × time_step × particle_concentration
Then it limits or scales that mass based on available gas mass and particle mass in each species bin.
- Computes the mass change each particle would take during
time_step. - Scales condensation so the column sum never exceeds
gas_mass. - Scales evaporation so the column sum never exceeds the particle inventory of that species.
- Clips the result so no individual bin evaporates more mass than it owns.
Parameters:
-
- mass_rate–The mass transfer rate per particle for each gas species [kg/s].
-
- time_step–The time step [s].
-
- gas_mass–The available mass of each gas species [kg].
-
- particle_mass–The mass of each particle for each gas species [kg].
-
- particle_concentration–The concentration of particles [#/m³].
Returns:
-
NDArray[float64]–- The mass transferred for multiple gas species, matching the shape of (particle_mass).
Examples:
import particula as par
par.dynamics.get_mass_transfer_of_multiple_species(
mass_rate=np.array([[0.1, 0.05, 0.03], [0.2, 0.15, 0.07]]),
time_step=10,
gas_mass=np.array([1.0, 0.8, 0.5]),
particle_mass=np.array([[1.0, 0.9, 0.8], [1.2, 1.0, 0.7]]),
particle_concentration=np.array([5, 4])
)
# Output: array([...])
Source code in particula/dynamics/condensation/mass_transfer.py
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 | |
get_mass_transfer_of_single_species
¶
get_mass_transfer_of_single_species(mass_rate: NDArray[float64], time_step: float, gas_mass: NDArray[float64], particle_mass: NDArray[float64], particle_concentration: NDArray[float64]) -> NDArray[np.float64]
Calculate mass transfer for a single gas species.
This function assumes gas_mass has a size of 1 (single species). It first computes the total mass_to_change per particle:
- mass_to_change = mass_rate × time_step × particle_concentration
Then it scales or limits that mass based on available gas mass and particle mass.
Parameters:
-
- mass_rate–Mass transfer rate per particle [kg/s].
-
- time_step–The time step [s].
-
- gas_mass–Total available mass of the gas species [kg].
-
- particle_mass–The mass of each particle [kg].
-
- particle_concentration–Particle concentration [#/m³].
Returns:
-
NDArray[float64]–- The amount of mass transferred for the single gas species, shaped like particle_mass.
Examples:
import particula as par
par.dynamics.get_mass_transfer_of_single_species(
mass_rate=np.array([0.1, 0.5]),
time_step=10,
gas_mass=np.array([0.5]),
particle_mass=np.array([1.0, 50]),
particle_concentration=np.array([1, 0.5])
)
# Output: array([...])
Source code in particula/dynamics/condensation/mass_transfer.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | |
get_mass_transfer_rate
¶
get_mass_transfer_rate(pressure_delta: Union[float, NDArray[float64]], first_order_mass_transport: Union[float, NDArray[float64]], temperature: Union[float, NDArray[float64]], molar_mass: Union[float, NDArray[float64]]) -> Union[float, NDArray[np.float64]]
Calculate the mass transfer rate for a particle.
This function calculates the mass transfer rate dm/dt, leveraging the difference in partial pressure (pressure_delta) and the first-order mass transport coefficient (K). The equation is:
- dm/dt = (K × Δp × M) / (R × T)
- dm/dt : Mass transfer rate [kg/s].
- K : First-order mass transport coefficient [m³/s].
- Δp : Partial pressure difference [Pa].
- M : Molar mass [kg/mol].
- R : Universal gas constant [J/(mol·K)].
- T : Temperature [K].
Parameters:
-
- pressure_delta–The difference in partial pressure [Pa].
-
- first_order_mass_transport–The mass transport coefficient [m³/s].
-
- temperature–The temperature [K].
-
- molar_mass–The molar mass [kg/mol].
Returns:
-
Union[float, NDArray[float64]]–- The mass transfer rate [kg/s].
Examples:
import particula as par
par.dynamics.mass_transfer_rate(
pressure_delta=10.0,
first_order_mass_transport=1e-17,
temperature=300.0,
molar_mass=0.02897
)
# Output: 1.16143004e-21
import particula as par
par.dynamics.mass_transfer_rate(
pressure_delta=np.array([10.0, 15.0]),
first_order_mass_transport=np.array([1e-17, 2e-17]),
temperature=300.0,
molar_mass=0.02897
)
# Output: array([1.16143004e-21, 3.48429013e-21])
References
- Aerosol Modeling: Chapter 2, Equation 2.41
- Seinfeld and Pandis, "Atmospheric Chemistry and Physics," Equation 13.3
Source code in particula/dynamics/condensation/mass_transfer.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | |
get_radius_transfer_rate
¶
get_radius_transfer_rate(mass_rate: Union[float, NDArray[float64]], particle_radius: Union[float, NDArray[float64]], density: Union[float, NDArray[float64]]) -> Union[float, NDArray[np.float64]]
Convert mass rate to radius growth/evaporation rate.
This function converts the mass transfer rate (dm/dt) into a radius change rate (dr/dt). The equation is:
- dr/dt = (1 / 4πr²ρ) × dm/dt
- dr/dt : Radius change rate [m/s].
- r : Particle radius [m].
- ρ : Particle density [kg/m³].
- dm/dt : Mass change rate [kg/s].
Parameters:
-
- mass_rate–The mass transfer rate [kg/s].
-
- particle_radius–The radius of the particle [m].
-
- density–The density of the particle [kg/m³].
Returns:
-
Union[float, NDArray[float64]]–- The radius growth (or evaporation) rate [m/s].
Examples:
import particula as par
par.dynamics.radius_transfer_rate(
mass_rate=1e-21,
particle_radius=1e-6,
density=1000
)
# Output: 7.95774715e-14
import particula as par
par.dynamics.radius_transfer_rate(
mass_rate=np.array([1e-21, 2e-21]),
particle_radius=np.array([1e-6, 2e-6]),
density=1000
)
# Output: array([7.95774715e-14, 1.98943679e-14])
Source code in particula/dynamics/condensation/mass_transfer.py
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | |