particula.particles.properties.settling_velocity¶
settling_velocity
¶
Particle settling velocity in a fluid.
get_particle_settling_velocity
¶
get_particle_settling_velocity(particle_radius: Union[float, NDArray[float64]], particle_density: Union[float, NDArray[float64]], slip_correction_factor: Union[float, NDArray[float64]], dynamic_viscosity: float, gravitational_acceleration: float = STANDARD_GRAVITY, fluid_density: float = 0.0) -> Union[float, NDArray[np.float64]]
Calculate particle settling velocity using Stokes' law.
The settling velocity (vₛ) is given by the equation:
- vₛ = (2 × r² × (ρₚ − ρ_f) × g × C_c) / (9 × μ)
- vₛ : Settling velocity in m/s
- r : Particle radius in m
- ρₚ : Particle density in kg/m³
- ρ_f : Fluid density in kg/m³
- g : Gravitational acceleration in m/s²
- C_c : Cunningham slip correction factor (dimensionless)
- μ : Dynamic viscosity in Pa·s
Parameters:
-
- particle_radius–The radius of the particle in meters.
-
- particle_density–The density of the particle in kg/m³.
-
- slip_correction_factor–Account for non-continuum effects (dimensionless).
-
- dynamic_viscosity–Dynamic viscosity of the fluid in Pa·s.
-
- gravitational_acceleration–Gravitational acceleration in m/s².
-
- fluid_density–The fluid density in kg/m³. Defaults to 0.0.
Returns:
-
Union[float, NDArray[float64]]–- Settling velocity of the particle in m/s.
Examples:
import numpy as np
import particula as par
par.particles.particle_settling_velocity(
particle_radius=np.array([1e-6, 1e-5, 1e-4]),
particle_density=np.array([1000, 2000, 3000]),
slip_correction_factor=np.array([1, 1, 1]),
dynamic_viscosity=1.0e-3
)
# Output: array([...])
References
- "Stokes' Law," Wikipedia, https://en.wikipedia.org/wiki/Stokes%27_law
Source code in particula/particles/properties/settling_velocity.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | |
get_particle_settling_velocity_via_inertia
¶
get_particle_settling_velocity_via_inertia(particle_inertia_time: Union[float, NDArray[float64]], particle_radius: Union[float, NDArray[float64]], relative_velocity: Union[float, NDArray[float64]], slip_correction_factor: Union[float, NDArray[float64]], gravitational_acceleration: float, kinematic_viscosity: float) -> Union[float, NDArray[np.float64]]
Calculate gravitational settling velocity using particle inertia time.
The settling velocity (vₛ) is determined by:
- vₛ = (g × τₚ × C_c) / f(Reₚ)
- g is gravitational acceleration (m/s²).
- τₚ is particle inertia time (s).
- C_c is the Cunningham slip correction factor (dimensionless).
- f(Reₚ) is the drag correction factor, 1 + 0.15 × Reₚ^0.687.
- Reₚ is particle Reynolds number (dimensionless).
Parameters:
-
- particle_inertia_time–Particle inertia time in seconds (s).
-
- particle_radius–Particle radius in meters (m).
-
- relative_velocity–Relative velocity between particle and fluid (m/s).
-
- slip_correction_factor–Cunningham slip correction factor (dimensionless).
-
- gravitational_acceleration–Gravitational acceleration (m/s²).
-
- kinematic_viscosity–Kinematic viscosity of the fluid (m²/s).
Returns:
-
Union[float, NDArray[float64]]–- Particle settling velocity in m/s.
Examples:
import particula as par
par.particles.get_particle_settling_velocity_via_inertia(
particle_inertia_time=0.002,
particle_radius=1.0e-6,
relative_velocity=0.1,
slip_correction_factor=1.05,
gravitational_acceleration=9.81,
kinematic_viscosity=1.5e-5
)
# Output: ...
References
- Ayala, O., Rosa, B., Wang, L. P., & Grabowski, W. W. (2008). "Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation." New Journal of Physics, 10. https://doi.org/10.1088/1367-2630/10/7/075015
Source code in particula/particles/properties/settling_velocity.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | |
get_particle_settling_velocity_via_system_state
¶
get_particle_settling_velocity_via_system_state(particle_radius: Union[float, NDArray[float64]], particle_density: Union[float, NDArray[float64]], temperature: float, pressure: float) -> Union[float, NDArray[np.float64]]
Compute the particle settling velocity based on system state parameters.
This function calculates the dynamic viscosity from temperature, the mean free path from the same system state, and the Knudsen number of the particle, then applies the slip correction factor. Finally, it returns the settling velocity from Stokes' law with slip correction.
Parameters:
-
- particle_radius–Particle radius in meters (m).
-
- particle_density–Particle density in kg/m³.
-
- temperature–Temperature of the system in Kelvin (K).
-
- pressure–Pressure of the system in Pascals (Pa).
Returns:
-
Union[float, NDArray[float64]]–- Settling velocity of the particle in m/s.
Examples:
import particula as par
par.particles.particle_settling_velocity_via_system_state(
particle_radius=1e-6,
particle_density=1200,
temperature=298.15,
pressure=101325
)
# Output: ...
References
- Gas viscosity property estimation: https://en.wikipedia.org/wiki/Viscosity#Gases
- Slip correction and Knudsen number relations from: Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics. Wiley-Interscience.
Source code in particula/particles/properties/settling_velocity.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | |
get_particle_settling_velocity_with_drag
¶
get_particle_settling_velocity_with_drag(particle_radius: Union[float, NDArray[float64]], particle_density: Union[float, NDArray[float64]], fluid_density: float, dynamic_viscosity: float, slip_correction_factor: Union[float, NDArray[float64]], gravitational_acceleration: float = STANDARD_GRAVITY, re_threshold: float = 0.1, tol: float = 1e-06, max_iter: int = 100) -> Union[float, NDArray[np.float64]]
Calculate terminal settling velocity with full drag model.
For low Reynolds numbers (Re < re_threshold), the Stokes settling velocity (with slip correction) is used:
- vₛ(Stokes) = (2/9) × [r² × (ρₚ − ρ_f) × g × C_c] / μ
For higher Reynolds numbers, a force-balance approach is solved numerically, using a variable drag coefficient (c_d).
- vₛ = fminbound(mismatch, 0, v_upper)
- mismatch = (v_pred - v)²
- v_pred = sqrt((8 × r × (ρₚ - ρ_f) × g) / (3 × ρ_f × c_d))
Parameters:
-
- particle_radius–Particle radius (m).
-
- particle_density–Particle density (kg/m³).
-
- fluid_density–Fluid density (kg/m³).
-
- dynamic_viscosity–Fluid dynamic viscosity (Pa·s).
-
- slip_correction_factor–Slip correction factor, dimensionless.
-
- gravitational_acceleration–Gravitational acceleration (m/s²), default is 9.80665.
-
- re_threshold–Reynolds number threshold (dimensionless), default is 0.1.
-
- tol–Numeric tolerance for solver (dimensionless), default is 1e-6.
-
- max_iter–Maximum function evaluations in numeric solver, default is 100.
Returns:
-
Union[float, NDArray[float64]]–- Terminal settling velocity (m/s). Scalar or NDArray.
Examples:
import numpy as np
import particula as par
r_array = np.array([1e-6, 5e-5, 2e-4])
rho_array = np.array([1500, 2000, 1850])
par.particles.get_particle_settling_velocity_with_drag(
particle_radius=r_array,
particle_density=rho_array,
fluid_density=1.225,
dynamic_viscosity=1.8e-5,
slip_correction_factor=np.array([1.0, 0.95, 1.1])
)
# Output: array([...])
References
- "Drag Coefficient," Wikipedia, https://en.wikipedia.org/wiki/Drag_coefficient
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric Chemistry and Physics, 3rd ed., John Wiley & Sons.
Source code in particula/particles/properties/settling_velocity.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | |