particula.particles.representation¶
representation
¶
Particle representation for a collection of particles.
ParticleRepresentation
¶
ParticleRepresentation(strategy: DistributionStrategy, activity: ActivityStrategy, surface: SurfaceStrategy, distribution: NDArray[float64], density: NDArray[float64], concentration: NDArray[float64], charge: NDArray[float64], volume: float = 1)
Everything needed to represent a particle or a collection of particles.
Represents a particle or a collection of particles, encapsulating the strategy for calculating mass, radius, and total mass based on a specified particle distribution, density, and concentration. This class allows for flexibility in representing particles.
Attributes:
-
-(strategy) –The computation strategy for particle representations.
-
-(activity) –The activity strategy for the partial pressure calculations.
-
-(surface) –The surface strategy for surface tension and Kelvin effect.
-
-(distribution) –The distribution data for the particles, which could represent sizes, masses, or another relevant metric.
-
-(density) –The density of the material from which the particles are made.
-
-(concentration) –The concentration of particles within the distribution.
-
-(charge) –The charge on each particle.
-
-(volume) –The air volume for simulation of particles in the air, default is 1 m^3. This is only used in ParticleResolved Strategies.
Methods: - get_strategy : Return the distribution strategy (optionally cloned). - get_strategy_name : Return the name of the distribution strategy. - get_activity : Return the activity strategy (optionally cloned). - get_activity_name : Return the name of the activity strategy. - get_surface : Return the surface strategy (optionally cloned). - get_surface_name : Return the name of the surface strategy. - get_distribution : Return the distribution array (optionally cloned). - get_density : Return the density array (optionally cloned). - get_concentration : Return the concentration array (optionally cloned). - get_total_concentration : Return the total concentration (1/m^3). - get_charge : Return the per-particle charge (optionally cloned). - get_volume : Return the representation volume in m^3 (optionally cloned). - get_species_mass : Return the mass per species, in kg. - get_mass : Return the array of total particle masses, in kg. - get_mass_concentration : Return the total mass concentration in kg/m^3. - get_radius : Return the array of particle radii in meters. - add_mass : Add mass to the distribution in each bin. - add_concentration : Add concentration to the distribution in each bin. - collide_pairs : Collide pairs of indices (ParticleResolved strategies).
Initialize the ParticleRepresentation.
Sets up the particle representation with required strategies and properties including distribution, density, concentration, charge, and volume for particle calculations.
Source code in particula/particles/representation.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
__str__
¶
__str__() -> str
Returns a string representation of the particle representation.
Returns:
-
str–- A string representation of the particle representation.
Example
str_rep = str(particle_representation)
print(str_rep)
Source code in particula/particles/representation.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | |
add_concentration
¶
add_concentration(added_concentration: NDArray[float64], added_distribution: Optional[NDArray[float64]] = None) -> None
Add concentration to the particle distribution.
Parameters:
-
- added_concentration–The concentration to be added per bin (1/m^3).
-
- added_distribution–Optional distribution array to merge into the existing distribution. If None, the current distribution is reused.
Example
particle_representation.add_concentration(added_concentration)
Source code in particula/particles/representation.py
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 | |
add_mass
¶
add_mass(added_mass: NDArray[float64]) -> None
Add mass to the particle distribution and update parameters.
Parameters:
-
- added_mass–The mass to be added per distribution bin, in kg.
Example
particle_representation.add_mass(added_mass)
Source code in particula/particles/representation.py
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | |
collide_pairs
¶
collide_pairs(indices: NDArray[int64]) -> None
Collide pairs of particles, used for ParticleResolved Strategies.
Performs coagulation between particle pairs by delegating to the distribution strategy's collide_pairs method. The smaller particle (first index in each pair) is merged into the larger particle (second index). Mass, concentration, and charge are all updated accordingly.
Charge conservation is handled automatically: if the particles have non-zero charges, they are summed during collisions. This enables physically accurate charge conservation in particle-resolved coagulation simulations.
Parameters:
-
- indices–Array of particle pair indices to collide, shape (K, 2) where each row is [small_index, large_index].
Example
particle_representation.collide_pairs(indices)
Source code in particula/particles/representation.py
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | |
get_activity
¶
get_activity(clone: bool = False) -> ActivityStrategy
Return the activity strategy used for partial pressure calculations.
Parameters:
-
- clone–If True, then return a deepcopy of the activity strategy.
Returns:
-
ActivityStrategy–- The activity strategy used for partial pressure calculations.
Example
activity = particle_representation.get_activity()
Source code in particula/particles/representation.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | |
get_activity_name
¶
get_activity_name() -> str
Return the name of the activity strategy used for partial pressure calculations.
Returns:
-
str–- The name of the activity strategy used for partial pressure calculations.
Example
activity_name = particle_representation.get_activity_name()
print(activity_name)
Source code in particula/particles/representation.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | |
get_charge
¶
get_charge(clone: bool = False) -> NDArray[np.float64]
Return the charge per particle.
Parameters:
-
- clone–If True, then return a copy of the charge array.
Returns:
-
NDArray[float64]–- The charge of the particles (dimensionless).
Example
charge = particle_representation.get_charge()
Source code in particula/particles/representation.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | |
get_concentration
¶
get_concentration(clone: bool = False) -> NDArray[np.float64]
Return the volume concentration of the particles.
For ParticleResolved Strategies, this is the number of particles per self.volume. Otherwise, it's per 1/m^3.
Parameters:
-
- clone–If True, then return a copy of the concentration array.
Returns:
-
NDArray[float64]–- The concentration of the particles in 1/m^3.
Example
concentration = particle_representation.get_concentration()
Source code in particula/particles/representation.py
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | |
get_density
¶
get_density(clone: bool = False) -> NDArray[np.float64]
Return the density of the particles.
Parameters:
-
- clone–If True, then return a copy of the density array.
Returns:
-
NDArray[float64]–- The density of the particles.
Example
density = particle_representation.get_density()
Source code in particula/particles/representation.py
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | |
get_distribution
¶
get_distribution(clone: bool = False) -> NDArray[np.float64]
Return the distribution of the particles.
Parameters:
-
- clone–If True, then return a copy of the distribution array.
Returns:
-
NDArray[float64]–- The distribution of the particles.
Example
distribution = particle_representation.get_distribution()
Source code in particula/particles/representation.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | |
get_effective_density
¶
get_effective_density() -> NDArray[np.float64]
Return the effective density of the particles, weighted by the mass of the species.
Returns:
-
NDArray[float64]–- The effective density of the particles.
Example
effective_density = particle_representation.get_effective_density()
Source code in particula/particles/representation.py
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | |
get_mass
¶
get_mass(clone: bool = False) -> NDArray[np.float64]
Return the mass of the particles as calculated by the strategy.
Parameters:
-
- clone–If True, then return a copy of the mass array.
Returns:
-
NDArray[float64]–- The mass of the particles in kg.
Example
mass = particle_representation.get_mass()
Source code in particula/particles/representation.py
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | |
get_mass_concentration
¶
get_mass_concentration(clone: bool = False) -> np.float64
Return the total mass per volume of the simulated particles.
The mass concentration is calculated from the distribution and concentration arrays.
Parameters:
-
- clone–If True, then return a copy of the mass concentration value.
Returns:
-
float64–- The mass concentration in kg/m^3.
Example
mass_concentration = (
particle_representation.get_mass_concentration()
)
print(mass_concentration)
Source code in particula/particles/representation.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 | |
get_mean_effective_density
¶
get_mean_effective_density() -> float
Return the mean effective density of the particles.
Returns:
-
float–- The mean effective density of the particles.
Example
mean_effective_density = (
particle_representation.get_mean_effective_density()
)
Source code in particula/particles/representation.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | |
get_radius
¶
get_radius(clone: bool = False) -> NDArray[np.float64]
Return the radius of the particles as calculated by the strategy.
Parameters:
-
- clone–If True, then return a copy of the radius array.
Returns:
-
NDArray[float64]–- The radius of the particles in meters.
Example
radius = particle_representation.get_radius()
Source code in particula/particles/representation.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | |
get_species_mass
¶
get_species_mass(clone: bool = False) -> NDArray[np.float64]
Return the masses per species in the particles.
Parameters:
-
- clone–If True, then return a copy of the computed mass array.
Returns:
-
NDArray[float64]–- The mass of the particles per species in kg.
Example
species_mass = particle_representation.get_species_mass()
Source code in particula/particles/representation.py
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 | |
get_strategy
¶
get_strategy(clone: bool = False) -> DistributionStrategy
Return the strategy used for particle representation.
Parameters:
-
- clone–If True, then return a deepcopy of the strategy.
Returns:
-
DistributionStrategy–- The strategy used for particle representation.
Example
strategy = particle_representation.get_strategy()
Source code in particula/particles/representation.py
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | |
get_strategy_name
¶
get_strategy_name() -> str
Return the name of the strategy used for particle representation.
Returns:
-
str–- The name of the strategy used for particle representation.
Example
strategy_name = particle_representation.get_strategy_name()
print(strategy_name)
Source code in particula/particles/representation.py
137 138 139 140 141 142 143 144 145 146 147 148 149 | |
get_surface
¶
get_surface(clone: bool = False) -> SurfaceStrategy
Return surface strategy for surface tension and Kelvin effect.
Parameters:
-
- clone–If True, then return a deepcopy of the surface strategy.
Returns:
-
SurfaceStrategy–- The surface strategy used for surface tension and Kelvin effect.
Example
surface = particle_representation.get_surface()
Source code in particula/particles/representation.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | |
get_surface_name
¶
get_surface_name() -> str
Return the name of the surface strategy used for surface tension and Kelvin effect.
Returns:
-
str–- The name of the surface strategy used for surface tension and Kelvin effect.
Example
surface_name = particle_representation.get_surface_name()
print(surface_name)
Source code in particula/particles/representation.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | |
get_total_concentration
¶
get_total_concentration(clone: bool = False) -> np.float64
Return the total concentration of the particles.
Parameters:
-
- clone–If True, then return a copy of the concentration array.
Returns:
-
float64–- The total number concentration of the particles in 1/m^3.
Example
total_concentration = (
particle_representation.get_total_concentration()
)
print(total_concentration)
Source code in particula/particles/representation.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | |
get_volume
¶
get_volume(clone: bool = False) -> float
Return the volume used for the particle representation.
Parameters:
-
- clone–If True, then return a copy of the volume value.
Returns:
-
float–- The volume of the particles in m^3.
Example
volume = particle_representation.get_volume()
Source code in particula/particles/representation.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | |